Cell: 630.312.9051 agalda@anl.gov

EDUCATION

Ph.D. in Theoretical Physics, *University of Birmingham (UK)*, December 2012 **B.Sc. in Applied Mathematics and Physics**, *Moscow Institute of Physics and Technology*, June 2008 (summa cum laude, 5.0/5.0 GPA)

RESEARCH INTERESTS AND EXPERTISE

- Superconductivity, theory of fluctuations
- Electron transport and theory of low-dimensional quantum systems
- Physics of vortex matter
- Theory of superconductor-insulator transition
- Spin-torque switching in magnetic micro- and nanostructures

PROFESSIONAL EXPERIENCE

Argonne National Laboratory, Materials Science Division

Postdoctoral Researcher

10/2012 – Present

- Predicted the existence of a novel fluctuation effect in Josephson Junctions. Developed a theory of fluctuation Shapiro resonances above the superconducting critical temperature. Initiated an experimental collaboration aimed at validating the theoretical results.
- Developed a theory of Gaussian fluctuations in superconductors with quenched disorder to explain thermodynamic properties of heavy-ion irradiated high-T_c superconducting materials.
- Studied stability of multi-quanta vortices in bounded critical superconductors.
- Discovered a new NMR relaxation mechanism in disordered two-dimensional superconductors in strong magnetic fields.
- Studied nonlinear magnetization dynamics induced by spin-polarized currents in anisotropic magnetic nanoparticles. Derived the condition for the existence and stability of non-trivial excited static and oscillating states in magnetic nanopillars.
- Discovered critical behaviour at the dynamic Mott transition in frustrated superconducting arrays.

University of Birmingham, UK

Graduate Student Researcher

09/2008 - 10/2012

- Studied single impurity problem in a one-dimensional system of interacting electrons in presence of
 electron-phonon coupling. Predicted a phase diagram with up to three fixed points and a possibility
 of a metal-insulator transition.
- Discovered the existence of a duality relation between the limits of weak and strong impurity scattering.

AWARDS/SCHOLARSHIPS

✓	Moreton Prize, University of Birmingham 2012	, 2011
\checkmark	Postgraduate Teaching Assistantship, University of Birmingham	2009
\checkmark	Midlands Physics Alliance Graduate School Scholarship (Full Tuition and Stipend for 4 years)	2008
\checkmark	Overseas Research Student Scholarship (Full Tuition and Stipend for 4 years), UK	2008
\checkmark	HSP Huygens Scholarship (Full Tuition and Stipend for 2 years, declined), Netherlands	2008

SERVICES

- o Reviewer for Theoretical Condensed Matter Physics Program at US Department of Energy
- Contributed to writing and reporting of US Department of Energy-funded FWP project

SELECTED PUBLICATIONS

Alexey Galda, A.S. Mel'nikov, V.M. Vinokur

"Resonant tunneling of fluctuation Cooper pairs",

Nature Scientific Reports, **5, 8315** (2015) (online)

I.V. Yurkevich, Alexey Galda, O.M. Yevtushenko, Igor V. Lerner

"Duality of Weak and Strong Scatterer in a Luttinger liquid Coupled to Massless Bosons", *Physical Review Letters* **110**, 136405 (2013) (online)

Alexey Galda, I.V. Yurkevich, Igor V. Lerner

"Effect of electron-phonon coupling on transmission through Luttinger Liquid hybridized with resonant level", Europhysics Letters **93**, 17009 (2011) (online)

Alexey Galda, I.V. Yurkevich, Igor V. Lerner

"Impurity Scattering in a Luttinger Liquid with Electron-Phonon Coupling", Physical Review B 83, 041106(R) (2011), (Rapid Communications, Editor's Suggestion) (online)